ENVIRONMENTAL PRODUCT DECLARATION

as per ISO 14025 and EN 15804+A2

Owner of the Declaration Rudolf Hensel GmbH

Publisher

14.02.2025 Issue date 13.02.2030 Valid to

HENSOTHERM® Service Transit Rudolf Hensel GmbH

www.ibu-epd.com | https://epd-online.com

1. General Information

Rudolf Hensel GmbH	HENSOTHERM® Service Transit								
Programme holder	Owner of the declaration								
IBU – Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany	Rudolf Hensel GmbH Lauenburger Landstraße 11 21039 Börnsen Germany								
Declaration number	Declared product / declared unit								
EPD-RHG-20240377-IBA3-EN	The declared product is HENSOTHERM® Service Transit. The declared unit refers to one unit of product. Packaging is included in the calculation. The declared unit is given in [kg]. The data of the embodiments is averaged over the number of units produced.								
This declaration is based on the product category rules:	Scope:								
Concrete admixtures, 01.08.2021 (PCR checked and approved by the SVR)	This document refers to HENSOTHERM® Service Transit. Specific data from the Börnsen manufacturing plant of Rudolf Hensel GmbH was collected for the preparation of the Life Cycle Assessment (LCA). Data from the year 2022 is used as a basis, which corresponds to the annual								
Issue date 14.02.2025	average. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.								
Valid to 13.02.2030	The EPD was created according to the specifications of EN 15804+A2. In the following, the standard will be simplified as <i>EN 15804</i> .								
	Verification								
	The standard EN 15804 serves as the core PCR								
	Independent verification of the declaration and data according to ISO 14025:2011								
	internally X externally								
DiplIng. Hans Peters (Chairman of Institut Bauen und Umwelt e.V.)									
Florian Pronold (Managing Director Institut Bauen und Umwelt e.V.)	DrIng. Wolfram Trinius, (Independent verifier)								

2. Product

halogens.

2.1 Product description/Product definition

HENSOTHERM® Service Transit consists of a high-density, crack-resistant plastic pipe that contains an intumescent lining made of graphite-based HENSOTHERM® 7 KS Gewebe, which expands when heated to seal off cavities around cables and pipes that pass through it. In addition, a ceramic wool plug prevents the passage of cold smoke and gases. HENSOTHERM® Service Transit is a non-hazardous material according to GefStoffV (German Ordinance on Hazardous Substances), and is non-toxic, low-smoke, and contains no

HENSOTHERM® Service Transit is part of the Green Product line at Rudolf Hensel GmbH.

Products according to CPR with ETA:

Regulation (EU) No. 305/2011 (CPR) applies to the placing on the market of the HENSOTHERM® Service Transit product in the EU / EFTA (with the exception of Switzerland). The product requires a Declaration of Performance in accordance with ETA No. 22/0542 for HENSOTHERM® Service Transit and the corresponding CE marking. The respective national regulations apply for use.

2.2 Application

HENSOTHERM® Service Transit is an easy-to-install preassembled fire penetration seal solution designed to reinstate the fire resistance performance of flexible wall constructions, rigid wall constructions, and floor constructions where they are penetrated by cables and PVC pipes.

European Technical Assessment according to *EAD 350454-00-1104*: HENSOTHERM® Service Transit is rated as a fire protection and sealing product – penetration seal.

HENSOTHERM® Service Transit is tested in accordance with *EN 1366-3* for a fire-resistance period of up to 180 minutes.

HENSOTHERM® Service Transit is classified in accordance with *EN 13501-1* as Euroclass **E**.

HENSOTHERM® Service Transit is classified in accordance with *EN 13501-2*.

HENSOTHERM® Service Transit is classified in accordance with *ETA 22/0702* for use in a combination rigid penetration seal with gypsum-based fire protection mortar.

HENSOTHERM® Service Transit is classified in accordance with *ETA 23/0318* for use in a HENSOMASTIK® Acrylic cable penetration seal.

The specific construction elements in which a **HENSOTHERM® ST 250 (length 250 mm)** may be used as a fire barrier are:

The supporting construction must be classified in accordance with *EN 13501-2* for the required fire-resistance period.

1. Lightweight partition walls: In accordance with *EN 520*, the wall must have a minimum thickness of 100 mm and consist of a wooden or steel stud structure lined on both faces with at least two layers of 12.5 mm thick gypsum plaster boards, type F. Between the seal and the stud frame, a minimum distance of 100 mm must be maintained and the gap between the stud and the seal must be closed with at least 100 mm of insulation

material of class A1 or A2 (according to EN 13501-1).

- **2. Solid walls:** The wall must have a minimum thickness of 100 mm and be made of aerated concrete or concrete with a minimum density of 650 kg/m³.
- **3. Solid ceilings:** The ceiling must have a minimum thickness of 150 mm and be made of aerated concrete or concrete with a minimum density of 650 kg/m³.

The specific construction elements in which a **HENSOTHERM® ST 400 (length 400 mm)** may be used as a fire barrier are:

1. Solid ceilings: The ceiling must have a minimum thickness of 200 mm and be made of aerated concrete or concrete with a minimum density of 650 kg/m³.

2.3 Technical Data

HENSOTHERM® Service Transit does not contain any hazardous substances above the limit values according to REACH Regulation, Annex XVII.

Structural data

Name	Value	Unit
Fire behaviour acc. to EN 13501-1	Construction material class E	-
Fire resistance acc. to EN 1366-3	EI 180	-
Durability acc. to EAD 350454-00-1104 EOTA TR 024	X, Y1, Y2, Z1 and Z2	-
Sound insulation acc. to DIN EN 10140-1 DIN EN 10140-2 DIN EN ISO 717-1 Rw max	66	dB
Sound insulation acc. to DIN EN 10140-1 DIN EN 10140-2 DIN EN ISO 717-1 Rw (C; Ctr)	51 (-1; -3)	dB

The proportion of HENSOTHERM® 7 KS Gewebe in HENSOTHERM® Service Transit is an emission-rated fire protection fabric. Sampling, testing and evaluation were carried out in accordance with *AgBB* (German board for the health assessment of building products) and *Leed* in their respective current versions.

Product according to CPR with ETA:

Performance values of the HENSOTHERM® Service Transit product correspond to the Declaration of Performance with regard to its essential characteristics according to *ETA No. 22/0542* for HENSOTHERM® Service Transit and the corresponding CE marking. The respective national regulations apply for use. HENSOTHERM® Service Transit is a non-hazardous material according to *GefStoffV* (German Ordinance on Hazardous Substances), and is non-toxic, low-smoke, and contains no halogens.

2.4 Delivery status

HENSOTHERM® Service Transit is an easy-to-install preassembled fire penetration seal which is offered as single units in a cardboard outer packaging. The Service Transit is available in different diameters from 63 to 110 mm and different lengths from 250 to 400 mm. A ceramic wool plug is also included with every Service Transit.

2.5 Base materials/Ancillary materials

Name	Value	Unit
PE pipe	60 - 70	%
HENSOTHERM® 7 KS Gewebe 125 E	15 - 25	%
Ceramic wool	5 - 15	%

HENSOTHERM® 7 KS 125 mm is used, coated on one side and self-adhesive.

2.6 Manufacture

To produce the HENSOTHERM® Service Transit product, a high-density, unbreakable polyethylene plastic pipe is manually cut to the required length and then covered on the inside with HENSOTHERM® 7 KS Gewebe 125 mm, also manually. The inner volume is sealed with a ceramic wool plug. The fire protection solution is then packed in cardboard boxes.

For the HENSOTHERM® 7 KS Gewebe product, an in-house quality control is carried out after production of each batch. This includes product-related and fire protection-related quality features.

In addition to the factory inspection of HENSOTHERM® 7 KS Gewebe, official external monitoring of HENSOTHERM® Service Transit is carried out at regular intervals.

2.7 Environment and health during manufacturing

The preliminary products are stored in such a way that they cannot, according to human judgement, enter the environment. In addition to sufficiently dimensioned extraction systems, employees are provided with protective clothing and dust masks. Suitable personal protective equipment is also provided.

HENSOTHERM® Service Transit does not contain any substances subject to declaration according to *REACH Regulation*, *Annex XVII*, and the *ECHA Candidate List*.

2.8 Product processing/Installation

HENSOTHERM® Service Transit can be inserted precisely into concrete, masonry, or dry walls. Alternatively, the annular gap can be filled with HENSOMASTIK® Acrylic. As individual cables – even in the case of reassignments – are simply fed through the windings of the ceramic wool plug and no additional coating of the cables is required, smaller openings for electrical cables can be sealed off quickly and cost-effectively. HENSOTHERM® Service Transit is also suitable as a quick-to-install temporary or permanent fire protection barrier for core drillings during the construction phase.

Details on installation requirements can be found in the relevant technical data sheet (see www.rudolf-hensel.de).

2.9 Packaging

HENSOTHERM® Service Transit is packed in cardboard boxes

2.10 Condition of use

A large number of electrical cables run inside buildings, especially in modern residential and office buildings. HENSOTHERM ® Service Transit is an easy-to-install, preassembled fire barrier for restoring the fire resistance of lightweight partition walls, solid walls and solid ceilings that are penetrated by cables and PVC electrical installation pipes. HENSOTHERM® Service Transit can also be used as a temporary solution during the construction phase or as an empty / standby penetration seal for later installations.

2.11 Environment and health during use

The HENSOTHERM® Service Transit product and its intumescent lining of HENSOTHERM® 7 KS Gewebe have certified low emissions, are environmentally- and user-friendly.

and compliant with most common regulations or protocols for building materials.

2.12 Reference service life

The provisions made in this European Technical Assessment are based on an assumed working life of the HENSOTHERM® Service Transit of 10 years, provided that the conditions for the packaging, transport, storage, installation, use, and repair are met.

The indications given on the service life cannot be interpreted as a guarantee given by the manufacturer or the Technical Assessment Body, issued by the *ETA* on the basis of *EAD 350454-00-1104*, but are to be regarded only as a means for choosing the right product in relation to the anticipated economically reasonable service life.

2.13 Extraordinary effects

Fire

The HENSOTHERM® Service Transit product contains HENSOTHERM® 7 KS Gewebe, an intumescent fabric tape based on expandable graphite. Intumescent materials such as expandable graphite, also known as 'intumescent agents', expand when exposed to heat and increase greatly in volume, forming a protective insulating layer that delays the passage of heat and can also seal cavities.

In the event of a fire, this feature means that pipe openings in walls and ceilings are sealed by the expanding insulation layer and no smoke gases or heat can penetrate into neighbouring rooms.

Fire protection

Name	Value
Building material class acc. to EN 13501-1	Е
Fire resistance acc. to EN 1366-3	EI 180

Water

HENSOTHERM® Service Transit is a pre-assembled fire penetration seal for dry indoor areas / open halls and must not be exposed to permanent wetness.

Mechanical destruction

Minor damage to HENSOTHERM® Service Transit can be ignored. In the event of major damage, the HENSOTHERM® Service Transit product must be replaced.

There are no known consequences for the environment due to unforeseen mechanical destruction.

2.14 Re-use phase

HENSOTHERM® Service Transit can be reused, even multiple times, provided that the HENSOTHERM® Service Transit product and its intumescent lining of HENSOTHERM® 7 KS Gewebe are not damaged.

Due to the organic content, HENSOTHERM® Service Transit has a material-inherent energy content that can be recovered in incineration plants.

In the event that HENSOTHERM® Service Transit is to be deposited separately, landfillability is guaranteed.

2.15 Disposal

The following waste code numbers must be taken into account:

AVV No. (recommended): 080199 Waste not otherwise specified

AVV No. (recommended): 150102 Plastic packaging

2.16 Further information

Further product information is available at:

www.rudolf-hensel.de.

3. LCA: Calculation rules

3.1 Declared Unit

The declared product is a fire protection pipe manufactured by Rudolf Hensel GmbH called HENSOTHERM® Service Transit. The declared unit refers to one unit of fire protection pipe. The packaging, based on one fire protection pipe, is also included in the calculation at 0.056 kg.

Declared unit and mass reference

Name	Value	Unit
Declared unit	0.465	kg
Gross density	-	kg/m ³

3.2 System boundary

Type of EPD: Cradle to gate with modules C1-C4 and module D. The following information modules are defined as system boundaries in this study:

Production stage (A1- A3):

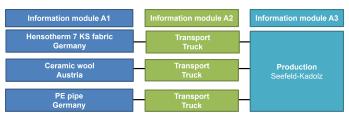
A1: Raw material extraction

A2: Transport to the manufacturer

A3: Production

End of Life (C1-C4):

C1: Dismantling/demolition


C2: Transport

C3: Waste treatment C4: Disposal

Reuse, recovery and recycling potential (D)

In order to accurately record the indicators and environmental impacts of the declared unit, a total of 8 information modules are analysed. Information modules A1 to A3 describe the provision of materials, transport to the production site, and the production processes for the product itself.

The primary products are sourced from the European Union. Transport is by truck. The following flow charts illustrate the underlying production process.

1 Information modules A1 to A3 of the product

2 Information modules A1 to A3 of the packaging

Information modules C1 to C4 cover the dismantling or demolition of the building, transport for waste disposal, waste treatment, and disposal of the product. Furthermore, reuse, recovery and recycling potential are shown in information module D.

3.3 Estimates and assumptions

The electricity mixes and underlying data are calculated on a country-specific basis for the production processes. An assumption was made for the calculation of carbon fibres. No assumptions were made for other substances.

3.4 Cut-off criteria

The cut-off criterion according to *EN 15804+A2* is applied. All energy and mass inputs were taken into account.

3.5 Background data

The databases used in this study are *LCA* for *Experts* and *Ecoinvent 3.9.1*.

3.6 Data quality

The assessment of the data quality is classified as appropriate, as the relevant data sets used to calculate the material provision of the declared unit are up to date. Data is provided in *LCA for Experts* under Data documentation with the respective reference year. Despite the use of different databases (*Sphera, Ecoinvent 3.9.1*), a consistent data basis is available, as all requirements for calculating the indicators in accordance with *EN 15804+A2* are met.

3.7 Period under review

Specific data from the Seefeld-Kadolz manufacturing plant in Austria was collected for the preparation of the Life Cycle Assessment (LCA). The data for input and output flows is from 2022 and corresponds to the annual average.

3.8 Geographic Representativeness

Land or region, in which the declared product system is manufactured, used or handled at the end of the product's lifespan: Global

3.9 Allocation

The co-products are allocated in information modules A1-A3. The production waste from the injection-moulded components is thermally recycled. The ensuing electrical and thermal energy credits are offset in modules A1-A3. No further allocations are made.

3.10 Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to *EN 15804* and the building context, respectively the product-specific characteristics of performance, are taken into account. The databases used in this study are *LCA for Experts* and *Ecoinvent 3.9.1*.

4. LCA: Scenarios and additional technical information

Characteristic product properties of biogenic carbon

No renewable raw materials are used in the product or the packaging. Biogenic carbon is therefore recognised as zero. The cardboard packaging contains biogenic carbon.

Information describing the biogenic carbon content at the plant gate

Name	Value	Unit
Biogenic carbon in the product	-	kg C
Biogenic carbon content in accompanying packaging	0.004	kg C

Note: 1 kg of biogenic carbon is equivalent to 44/12 kg of CO₂.

End of Life (C1-C4)

Demolition of the fire protection pipe from the building is calculated in information module C1. The fire protection fabric

can be removed by hand. A transport distance of 50 km to the nearest waste treatment plant is assumed.

Name	Value	Unit
Collected separately waste type	0.465	kg
Energy recovery	0.451	kg

The material lost during the process is shredder light fraction and is disposed of.

Reuse, recovery and recycling potential (D)

No reuse, recovery and recycling potentials arise in this calculation. The information module D is therefore declared and shown as zero.

5. LCA: Results

Thermal utilisation produces electrical and thermal energy.

The thermal energy of 1.22 MJ and the electrical energy of 0.525 MJ are declared in module C3.

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE OR INDICATOR NOT DECLARED; MNR = MODULE NOT RELEVANT)

	MODULE NOT RELEVANT															
Product stage			I	ruction s stage	I ISE STAGE Find (End of li	fe stage	e	Benefits and loads beyond the system boundaries			
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse- Recovery- Recycling- potential
A 1	A2	А3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
Χ	Χ	Х	MND	MND	MND	MND	MNR	MNR	MNR	MND	MND	Χ	Χ	Х	Х	X

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT according to EN 15804+A2: 0,465 kg HENSOTHERM® Service Transit										
Parameter	Unit	A1-A3	C1	C2	C3	C4	D			
Global Warming Potential total (GWP-total)	kg CO ₂ eq	1.49E+00	0	2.27E-03	5.88E-02	0	0			
Global Warming Potential fossil fuels (GWP-fossil)	kg CO ₂ eq	1.48E+00	0	2.23E-03	5.88E-02	0	0			
Global Warming Potential biogenic (GWP-biogenic)	kg CO ₂ eq	0	0	0	0	0	0			
Global Warming Potential Iuluc (GWP-Iuluc)	kg CO ₂ eq	7.79E-03	0	3.61E-05	4.06E-05	0	0			
Depletion potential of the stratospheric ozone layer (ODP)	kg CFC11 eq	1.62E-09	0	2.16E-16	6.06E-13	0	0			
Acidification potential of land and water (AP)	mol H ⁺ eq	2.21E-02	0	1.09E-05	1.16E-04	0	0			
Eutrophication potential aquatic freshwater (EP-freshwater)	kg P eq	1.73E-04	0	9.16E-09	3.73E-08	0	0			
Eutrophication potential aquatic marine (EP-marine)	kg N eq	7.22E-03	0	5.26E-06	7.92E-05	0	0			
Eutrophication potential terrestrial (EP-terrestrial)	mol N eq	5.92E-02	0	5.86E-05	9.83E-04	0	0			
Formation potential of tropospheric ozone photochemical oxidants (POCP)	kg NMVOC eq	7.26E-03	0	1.05E-05	1.86E-04	0	0			
Abiotic depletion potential for non fossil resources (ADPE)	kg Sb eq	1.19E-06	0	1.82E-10	2.27E-09	0	0			
Abiotic depletion potential for fossil resources (ADPF)	MJ	1.86E+01	0	2.8E-02	2.41E+00	0	0			
Water use (WDP)	m ³ world eq deprived	2.25E+00	0	3.2E-05	6.67E-02	0	0			

RESULTS OF THE LCA - INDICATORS TO DESCRIBE RESOURCE USE according to EN 15804+A2: 0,465 kg HENSOTHERM® Service Transit

Parameter	Unit	A1-A3	C1	C2	C3	C4	D
Renewable primary energy as energy carrier (PERE)	MJ	3.16E+01	0	2.37E-03	9.58E-02	0	0
Renewable primary energy resources as material utilization (PERM)	MJ	8.4E-01	0	0	0	0	0
Total use of renewable primary energy resources (PERT)	MJ	3.24E+01	0	2.37E-03	9.58E-02	0	0
Non renewable primary energy as energy carrier (PENRE)	MJ	3.14E+00	0	2.8E-02	-1.74E+01	0	0
Non renewable primary energy as material utilization (PENRM)	MJ	1.54E+01	0	0	1.5E+01	0	0
Total use of non renewable primary energy resources (PENRT)	MJ	1.86E+01	0	2.8E-02	-2.41E+00	0	0
Use of secondary material (SM)	kg	0	0	0	0	0	0
Use of renewable secondary fuels (RSF)	MJ	0	0	0	0	0	0
Use of non renewable secondary fuels (NRSF)	MJ	0	0	0	0	0	0
Use of net fresh water (FW)	m ³	7.08E-02	0	2.66E-06	1.41E-03	0	0

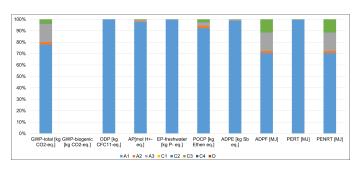
RESULTS OF THE LCA – WASTE CATEGORIES AND OUTPUT FLOWS according to EN 15804+A2: 0,465 kg HENSOTHERM® Service Transit

Parameter	Unit	A1-A3	C1	C2	C3	C4	D
Hazardous waste disposed (HWD)	kg	5.18E-09	0	9.06E-13	8.51E-12	0	0
Non hazardous waste disposed (NHWD)	kg	2.23E-01	0	4.36E-06	3.33E-02	0	0
Radioactive waste disposed (RWD)	kg	4.24E-04	0	3.62E-08	-1.67E-04	0	0
Components for re-use (CRU)	kg	0	0	0	0	0	0
Materials for recycling (MFR)	kg	4E-02	0	0	0	0	0
Materials for energy recovery (MER)	kg	0	0	0	0	0	0
Exported electrical energy (EEE)	MJ	0	0	0	5.25E-01	0	0
Exported thermal energy (EET)	MJ	0	0	0	1.22E+00	0	0

RESULTS OF THE LCA – additional impact categories according to EN 15804+A2-optional: 0,465 kg HENSOTHERM® Service Transit

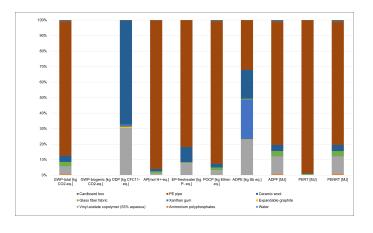
Parameter	Unit	A1-A3	C1	C2	C3	C4	D
Incidence of disease due to PM emissions (PM)	Disease incidence	ND	ND	ND	ND	ND	ND
Human exposure efficiency relative to U235 (IR)	kBq U235 eq	ND	ND	ND	ND	ND	ND

Comparative toxic unit for ecosystems (ETP-fw)	CTUe	ND	ND	ND	ND	ND	ND
Comparative toxic unit for humans (carcinogenic) (HTP-c)	CTUh	ND	ND	ND	ND	ND	ND
Comparative toxic unit for humans (noncarcinogenic) (HTP-nc)	CTUh	ND	ND	ND	ND	ND	ND
Soil quality index (SQP)	SQP	ND	ND	ND	ND	ND	ND

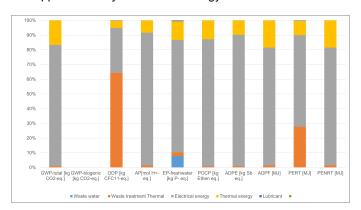

Disclaimer 1 – for the indicator "Potential Human exposure efficiency relative to U235". This impact category deals mainly with the eventual impact of low-dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure or radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, radon and from some construction materials is also not measured by this indicator.

Disclaimer 2 – for the indicators "abiotic depletion potential for non-fossil resources", "abiotic depletion potential for fossil resources", "water (user) deprivation potential, deprivation-weighted water consumption", "potential comparative toxic unit for ecosystems", "potential comparative toxic unit for humans – cancerogenic", "Potential comparative toxic unit for humans – not cancerogenic", "potential soil quality index". The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high as there is limited experience with the indicator.

6. LCA: Interpretation


The dominance analysis shows that the main causes of the environmental impacts and indicators can be found in information module A1.

This shows the total global warming potential for material provision at approx. 78% and approx. 15% for production, based on all information modules.



Looking at the material provision of the fire protection pipe and the packaging in detail, it becomes clear which raw materials make a decisive contribution to the respective environmental impacts and indicators.

The PE pipe accounts for approx. 84% and the vinyl acetate copolymer (53% aqueous) for approx. 5% of the total global warming potential in information module A1. Ceramic wool accounts for approx. 5%.

Information module A3 clearly shows that approx. 81% of the total global warming potential is caused by the electrical energy and approx. 17% by the thermal energy.

7. Requisite evidence

Test report from Eco-Institut Germany GmbH:

AgBB result overview (28 days [µg/m³])

Name	Value	Unit
SVOC without LCI	< 5,0	µg/m³
VOC	< 5,0	µg/m³
R (dimensionless)	< 1	-

HENSOTHERM® 7 KS Gewebe: Report no. B53008-001 dated 09 April 2018

The emission values were determined directly after application of the coating materials.

French VOC labelling regulation: Emission class A

French KMR emissions regulation. Criteria fulfilled: yes

HENSOTHERM® 7 KS Gewebe: *Report no. B53008-001* dated 30 May 2018 and *no. 53008-001II* dated 09 April 2018

Test report of the Prüfzentrum für Bauelemente KG:

Airborne sound insulation test in accordance with DIN EN 10140

Name	Value	Unit
Rw max	60	dB
Rw (C; Ctr)	51 (-1; -3)	dB
Dn,e,w (C; Ctr)	61 (-1; -3)	dB

HENSOTHERM® Service Transit: Report no. 2021-05-0572-K2 dated 17 January 2022

8. References

DIN EN 10140

DIN EN 10140-1:2021-9, Acoustics – Laboratory measurement of sound insulation of building elements – Part 1: Application rules for specific products DIN EN 10140-2:2021-9, Acoustics – Laboratory measurement of sound insulation of building elements – Part 2: Measurement of airborne sound insulation

EN 15804

EN 15804:2019-04+A2+AC:2021, Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products

DIN EN ISO 717

DIN EN ISO 717-1:2021-05, Acoustics – Evaluation of sound insulation in buildings and of building elements – Part 1

DIN EN ISO 14025

DIN EN ISO 14025:2011-10, Environmental labels and declarations – Type III environmental declarations

DIN EN ISO 14040

DIN EN ISO 14040:2021-02, Environmental management – Life cycle assessment – Principles and framework

DIN EN ISO 14044

DIN EN ISO 14044:2021-02, Environmental management – Life cycle assessment – Requirements and guidelines

EN 520

EN 520:2009-12, Gypsum plasterboards – Definitions, requirements and test methods

EN 1366

EN 1366:2022-05, Fire resistance tests for installations – Part 3: Penetration seals

EN 13501

EN 13501-1:2019, Fire classification of construction products and building elements – Part 1: Classification using data from reaction to fire tests

EN 13501-2:2016, Fire classification of construction products and building elements – Part 2: Classification using data from fire resistance and/or smoke control tests, excluding ventilation services

ISO 16000

ISO 16000-3:2023, Indoor air – Part 3: Determination of formaldehyde and other carbonyl compounds in indoor air and test chamber air – Active sampling method

ISO 16000-6:2023, Indoor air – Part 6: Determination of volatile organic compounds in indoor and test chamber air by active sampling on Tenax TA sorbent, thermal desorption and gas chromatography using MS or MS-FID

ISO 16000-9:2006, Indoor air – Part 9: Determination of the emission of volatile organic compounds from building products

and furnishing – Emission test chamber method ISO 16000-11:2006, Indoor air – Part 11: Determination of the emission of volatile organic compounds from building products and furnishing – Sampling, storage of samples and preparation of test specimens

AgBB

Committee for Health-related Evaluation of Building Products (AgBB) Evaluation scheme for VOC emissions from indoor-relevant building products (2021)

AVV

Ordinance on the European Waste Catalogue (Waste Catalogue Ordinance, AVV) – Date of issue: 10 December 2001

EAD 350454-00-1104

EAD No. 350454-00-1104, Fire protection and fire sealing products – Penetration seals

ECHA Candidate List

European Chemical Agency (ECHA), Candidate List: Candidate List of Substances of Very High Concern for Authorisation (published in accordance with Article 59(10) of the REACH Regulation)

Ecoinvent 3.9.1

Background data: ecoinvent 3.9.1, Zurich: ecoinventhttp://www.ecoinvent.org (05 March 2024)

EOTA TR 024

Technical description and assessment of reactive products effective in case of fire

ETA No. 22/0542

European Technical Assessment dated 06 September 2022 for HENSOTHERM® Service Transit for individual penetrations

ETA No. 22/0702

European Technical Assessment dated 22 May 2023 for HENSOTHERM® GM 2000

ETA No. 23/0318

European Technical Assessment dated 26 May 2023 for HENSOMASTIK® Acrylic cable insulation 2 x 50 mm

French VOC classification regulation

'Décret n° 2011-321' (Decree no. 2011-321) and 'Arrêté relatif à l'étiquetage des produits de construction ou de revêtement de mur ou de sol et des peintures et vernis sur leurs émissions de polluants volatils' (Decree on the labelling of construction products, wall or floor coverings, and paints and varnishes on their emissions of volatile pollutants)

French KMR emissions regulation

'Arrêté du 28 mai 2009 modifiant l'arrêté du 30 avril 2009 relatif

aux conditions de mise sur le marché des produits de construction et de décoration contenant des substances cancérigènes, mutagènes ou reprotoxiques de catégorie 1 ou 2' (Order of 28 May 2009 amending the order of 30 April 2009 on the conditions for placing on the market construction and decoration products containing category 1 or 2 carcinogenic, mutagenic or reprotoxic substances)

IBU 2021

General instructions for the EPD programme of Institut Bauen und Umwelt e.V., version 2.0, Berlin: Institut Bauen und Umwelt e.V., 2021 www.ibu-epd.com

PCR. Part A

Product category rules for building-related products and services – Part A: Calculation rules for the Life Cycle Assessment and requirements for the background report, V1.3, Institut Bauen und Umwelt e.V., August 2022

PCR, Part B

PCR Preformed fire protection systems for cable and pipe

penetration seals, 01 August 2021

PCR: Building products

Product category rules for building-related products and services – Part B: Requirements for the EPD for preformed fire protection systems for cable and pipe penetration seals, version v7, Berlin: Institut Bauen und Umwelt e.V. (pub.), July 2023

REACH Regulation, Annex XVII

Regulation (EC) 1907/2006 of the European Parliament and of the Council of 18 December 2006 (REACH Regulation) – Restrictions – Official Journal L396/396851 of 30 December 2006

Sphera

LCA for Experts: Software and database for comprehensive accounting, Leinfelden-Echterdingen; Sphera Solutions GmbH (pub.) https://www.sphera.com/product-sustainability-gabi-datasearch/

Publisher

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Programme holder

Institut Bauen und Umwelt e.V. Hegelplatz 1 10117 Berlin Germany +49 (0)30 3087748- 0 info@ibu-epd.com www.ibu-epd.com

Author of the Life Cycle Assessment

FIT-Umwelttechnik GmbH Westerstr. 13 38442 Wolfsburg Germany 05362 72 69 474 bertram@fit-umwelttechnik.de www.fit-umwelttechnik.com

Owner of the Declaration

Rudolf Hensel GmbH Lauenburger Landstraße 11 21039 Börnsen Germany +49 (0)40 7210 6210 info@rudolf-hensel.de www.rudolf-hensel.de